If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7a^2+48a+36=0
a = 7; b = 48; c = +36;
Δ = b2-4ac
Δ = 482-4·7·36
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-36}{2*7}=\frac{-84}{14} =-6 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+36}{2*7}=\frac{-12}{14} =-6/7 $
| 75=1/2(x+5x) | | 11(z+10)+10=2z-10 | | 45/a=2.5 | | 8+-4=-2-(x+-4) | | 15x-77=98+8x | | 70-5/4q=5/4q | | 5s-9=5+9(s+9) | | H(x)=9x^2+7 | | m-32=68 | | 6w+3*7=6 | | 12(x+2)=3(4x+8) | | 5/9=w/36 | | X-320=w | | 4x+88=2x+52 | | 40=m-2 | | 1+1/3y=0 | | 21+7x=70 | | -3x-17=-50 | | 4(5)+5y+20(2)=100 | | 2b+787=1936 | | 4x+1=3x-1= | | 28=(3x+4)4 | | 6x+1-6x=4x-9 | | 5u+u=30 | | 8y-2=4y=22 | | 5+4x=3x+x | | (x-1)^2-(x+3)^2-88=0 | | (6x-3)(4x=33) | | 120=18x-16x-15x | | -7x+19=-2x+55 | | 9(5x-7)=4x-3 | | -6y=2y+12 |